

Abstracts

Modeling and characterization of SiGe HBT low-frequency noise figures-of-merit for RFIC applications

Jin Tang, Guofu Niu, Zhenrong Jin, J.D. Cressler, Shiming Zhang, A.J. Joseph and D.L. Harame. "Modeling and characterization of SiGe HBT low-frequency noise figures-of-merit for RFIC applications." 2002 Transactions on Microwave Theory and Techniques 50.11 (Nov. 2002 [T-MTT] (Mini-Special Issue on the 2002 IEEE Radio Frequency Integrated Circuit (RFIC) Symposium)): 2467-2473.

We present the first systematic experimental and modeling results of noise corner frequency ($f_{\text{sub C}}$) and noise corner frequency to cutoff frequency ratio ($f_{\text{sub C}}/f_{\text{sub T}}$) for SiGe heterojunction bipolar transistors (HBTs) in a commercial SiGe RF technology. The $f_{\text{sub C}}$ and $f_{\text{sub C}}/f_{\text{sub T}}$ ratio are investigated as a function of operating collector current density, SiGe profile, breakdown voltage, and transistor geometry. We demonstrate that both the $f_{\text{sub C}}$ and $f_{\text{sub C}}/f_{\text{sub T}}$ ratio can be significantly reduced by careful SiGe profile optimization. A comparison of the $f_{\text{sub C}}$ and $f_{\text{sub C}}/f_{\text{sub T}}$ ratio for high breakdown and standard breakdown voltage devices is made. Geometrical scaling data show that the SiGe HBT with $A/\text{sub E}=0.5/\text{spl times}/2.5/\text{spl mu/m}^2$ has the lowest $f_{\text{sub C}}$ and $f_{\text{sub C}}/f_{\text{sub T}}$ ratio compared to other device geometries. An $f_{\text{sub C}}$ reduction of nearly 50% can be achieved by choosing this device as the unit cell in RF integrated-circuit design.

[Return to main document.](#)